6th International KULI User Meeting

13th - 14th June, 2007 Steyr Austria

Correlation of a 1D KULI model against Vehicle Test Results for an Off-Highway Vehicle

Martin Timmins

DENSO Marston Ltd

Correlation of a 1D Kuli model against Vehicle Test Results for an Off-Highway Vehicle

Contents:

- Introduction & Calculation Concept
- Typical Off Highway Cooling Modules
- KULI Simulation
 - Model
 - Results
- Summary

1. Introduction

• Alternative methods for determining in-vehicle performance

1D Thermal Simulation using KULI

Key Parameters in a KULI model:

Key discussion point - correlation of KULI model to test results to determine the *Built in Resistance* (and therefore Cooling Air Mass Flow)

Calculation Concept - Operating Point of the Fan

Compare different methods of finding the installation resistance :

- Iterative Approach
- Using KULI advanced optimization

DENSO

2. Typical Off Highway Cooling Modules:

- Complex cooling modules for off highway vehicles including radiator, oil cooler (transmission and hydraulic), charge air cooler, fuel cooler and condenser
- KULI is useful for modelling complex off highway cooling modules

3. Example KULI Simulation - Compact Wheel Loader Cooling System

3D Layout

- Radiator tanks and supporting structure are modelled as an air side resistance using area resistances
- Cooling pack modelled as a block in the air path
- No CP is used since the driving speed is set to zero (cooling system at rear)
- Basic layout of Inner circuit

Test Data and Boundary Conditions

- There are four different test conditions
- 1. Rated speed at set load
- 2. 30kph Roading
- 3. Continuous Truck Loading
- 4. Intermittent truck loading
- For each test, data has been provided for the water, hydraulic and fuel circuits:
- Inner medium Flow rate
- Inlet Temperature
- Outlet Temperature
- Air On
- Air Off
- Ambient Temperature

Tested on chassis dyno

Field tests (data taken after stabilisation of temperatures)

Method:

Use this data to calculate heat load:

 $Q = m' x Cp X \Delta T$

Then set as open circuit and try to balance top hose temperature with test results by varying BIR

✓ There is sufficient data to set up a KULI model

Step 1 - Calculation of BIR Parameter, Iterative Method

2. Run KULI simulation for all four test conditions.

Max. deviation from test result on radiator top hose is 1.6°C

Calculation of BIR Parameter by Iterative Approach - cont.

 Max. deviation of oil cooler inlet temperature from test results is 2.3°C

 Max. deviation of fuel cooler inlet temperature from test results is 3°C (Reference only since kW is estimated).

Model correlates within acceptable limits for all circuits and tests- but how can it be improved?

Step 2 - Calculation of BIR Parameter using KULI Advanced

Inner Circuit

DENSO

KULI Advanced Optimization Results

First - Comparison of BIR Optimization Parameter:Iterative approacha = 32KULI Optimizeda = 31.8824CLOSE!

Second - Comparison of Simulation Results:

•KULI Advanced and iterative approach results very similar

•Main benefit of KULI Advanced is time saving

Final Inner Circuit - Optimization plus multiple tests

Step 3 - Optimization of all four test results

One further look at optimization - using KULI advanced to calculate the BIR parameter to optimize each individual test point

- Variation in BIR illustrates the effect of varying test conditions, measurement uncertainties, instrumentation accuracy, assumptions etc.
- By using the average BIR it possible to reduce the effect of these variables

Step 4 - Final check with the averaged BIR

Comparison of Average Errors (Absolute Values, °C):

	Iterative	KULI Advanced	KULI advanced
		(1 st Test only)	(4 tests & averaged)
Radiator	1.0	1.0	1.0
Oil Cooler	1.35	1.35	1.2

Include this BIR in your system!

Summary

1. Accuracy of model - correlation against test results

	Radiator IM Inlet Temp	Hydraulic O/C IM Inlet Temperature
Single Point Optimization (Iterative or KULI Advanced)	Good	Acceptable
Four point optimization, average result	Good	Improved (Good)

 Averaged approach has benefit on accuracy

2. Productivity (estimated time saving)

Options for optimization		Iterative (by hand)	KULI Advanced
Rad. IM Inlet Temperature	Single Point / Multi Point	100	25
Hydraulic O/C Inlet Temperature	Single Point / Multi Point	100	25

•KULI Advanced Optimization gives a major benefit of time saving

Thank you for your Attention Any Questions?

